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We consider the topolo 
the shock wavefront. I$ 

ical properties of flow in the subsonic region situated behind 
e prove that when a supersonic jet enters a region of increased 

pressure with irregular reflection of the oblique condensation jump from the symmetry 
axis, then the Mach shock wavefront has it concave side towards the oncoming stream. 
Conversely, if a shock wave in a supersonic flow forms in front of a blunt body immer-. 
sed in this flow, then the segment responsible for retardin 
is convex. Both these properties follow from the results o B 

the gas to subsonic velocities 
various experiments and com- 

putations, although so far no strict proof of the above statements has been offered. 
Let us consider a plane flow behind a smooth shock wave in a uniform supersonic 

stream. 
The equations of plane adiabatic flow can be written in a local coordinate system 

related to the streamlines, 

where p is pressure; fi is the angle of inclination of the velocity vector measured 
anticlockwise; M is the Mach number; k is the ratio of specific heats (we assume 
that k > if, 3 (...).I aal, ~3 (...) / as, are the directional derivatives along and normal 
to the velocity vector; the latter direction s obtained by rotating the velocity vector by 
‘/a fi anticlockwise. 

Let us consider the mapping of the re ion situated behind the shock wave in the phy- 
sical zy - 
upwards an B 

lane, into the pfi -plane ( a e B - and y -axes are directed vertically 
the p - and %*-axes - horizontally to the right). Using (1)) we obtain 

the following expression for the Jacobian of a (P, & / C? (2, g) 

a (PB PI 
J’=a =a(Slr -kpMs (2) 

Since J > 0 for M Irf; $, the mapping of the subsonic region into the d-plane 
has no folds, because passage through the edge of a fold (branch line) would alter the 
sign of the Jacobian. (Nikol’skii and Sedov obtained this property in a somewhat differ- 
ent form in [I]). Further ,the point at which J = 0 is isolated when M < 1 , since the 
solution of the Cauchy problem with the initial conditions given at the line J = 0 
would lead to the trivial case of a uniform flow. (It should be noted, however, that a 
mapping which is locally univalent need not be so “in the whole”. Projection onto a 
spiral surface with its axis deleted is an example of this), 

Since the Jacobian J represents the ratio of areas of the oriented elementary cont- 
ours in the planes pfl and zP, its nonnegativity for M < i implies the following rule, 

When the boundary C of the subsonic region is uaversed anticlcckwise, with the 
region remaining to the left, the boundary of its image in the d-plane is also rra- 
versed anticlockwise, with the image also remaining to the left. 

The image of the shock wave in the d-plane lies on the closed curve e I p (P) 
where the function p (p) is given by the relations at the condensation jump. Let us 
turn our attention to the “subsonic” segment bsb’ (Fig. 1) lying on this curve (i. e. on 
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the shock polar); as we move along this shock polar from the point c to the point n , 
the velocity increases and the pressure decreases ( J corresponds to the point S of 
ortfiogonality of the shock wave to the velocity vector; n corresponds to the point at 
which the shock wave degenerates into a characteristic). 

Property 1. Let us denote by 2’ the point of inflection of the shock wave rela- 
tive to the exterior normal. If a point T exists on the shock wave, then the relations 
at the condensation jump imply that traversal of the shock wave past the point T, cor- 
responds to traversal of the shock polar with the cusp L, which is the image of 2’ (Fig. 
2). If the velocity at 2’ is subsonic, then the fact that / >O when M ( i implies 
that the image of the shock wave near T is a cut in the image of the region behind 
the shock wave (Fig. 2). 

Fig. 1 Fig. 2 

Property 2. Analysing the formula for the pressure behind the condensation 
jump, we find that when i < M, < v (k) then the shock polar intersects the straight 
line 

The points of intersection belong to the subsonic segment of rhe shock polar. (Here 

M,and poo are the Mach number and the total pressure in the incident flow; v (k) 
is a constant; in addition we shall denote me Mach number at the points of intersection 
of the shock wave and the straight line p=p+ by M, and the minimum value of the 

Mach number on the shock polar by M, ). 
This implies that when 1 < M, <p (k, M,) , 
where p (k, M,) is constant and smaller 
than v (k) (Fig. 3), the segment of the 

shock polar on which M, ( M < M, is 
situated to the right of the straight line 
p = p+, i.e. that on this segment 

Fig. 3 

Property 3. Since on the sonic line we have 
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(PO, denotes the total pressure in the region behlnd the shock wave), the image of the 
sonic line inthefiplane is situated to the left of the straight line p = J+ 

Let us denote the subsonic region adjacent to the shock wave by B . In general, this 
re 

% 
ion can be bounded by se 

(w a rch are absent when the s 
ments of the shock wave, of the tangential discontinuities 
ock wave is smooth), by the segments of the profile con- 

tours, by the sonic lines, and by the secondary condensation jumps in the locally super- 
sonic zones. 

Let us limit ourselves to cases where the boundary of G does not contain secondary 
condensation jumps, and consider two types of G : those whose boundary contains a 
segment of the profile contour, and those whose boundary does not contain such a seg- 
ment.. 

Theorem 1. Let the boundary of me subsonic region G consist only of the seg- 
ments of the smooth shock wave and of sonic lines. For M,<p (k, M,) the segment 
of the shock wave (belonging to the boundary of G ) on which M < M, is convex 
towards the region behind the shock wave at each of its poinrs (Fig. 4). 

Let us assume the opposite and postulate the existence of a point f on the above 
segment of the shock wave. Then a subregion P of C exists whose image in the pB - 

plane ls situated ourside the loop of the shock polar 
and to the right of the line p = pt. This follows 
from the Property 1 if the image of the shock wave 

+t!L - - -_ 

Fig. 4 Fig. 5 

near T lies on the shock polar to the left of 1. If, on the other hand, me image of 
the shock wave appears to the right of t, on the shock polar, then the image of P is 
near I, which ls the extreme right-hand point of the shock polar. Thus we can state 
without loss of generality that no other point t exists between the points t and c on 
the shock polar. Since the pressure in the flow is finite, the image of P must be boun- 
ded on the right. 

Since the boundary of G comists only of segments of the shock wave and of sonic 
lines, and since there are no branch lines for M < i (if the mapping includes folds 
the boundary of the image may contain a branch line), the boundary of the image of 
at whose points p > pt can only be the mapping of a segment of the sonic line. By 
Properties 2 and 3 tbls is impossible when M, < p (k, M,) . 

Thus we find that the shock wave does not contain any polno T on a certain subso- 
nic segment (for M < M,) and that the image of a neighborhood of this segment lies 
inside the loop of me shockgolar., Using the rule of assa e around the boundary of G . 
and the relations at the con ensatron ]ump, we find 
is convex towards the region behind the shock wave. 

$at t!e shock wave on this segment 

such a flow with a “concave” shock wave occurs when a supersonic jet flows into a 
region of hi 
from the ax 

h pressure and the oblique condensation jump is reflected “irregularly” 
& of symmetry of the jet [s] (Fig. 5). 
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Now let us consider a region C whose boundary includes a segment of the profile 
contour. Let us investigate a flow past a smooth convex profile with a receded shock 
wave. The critical point is that at which the streamline reaching the profile branches 
out into two streamlines; the velocity at the critical point is zero. 

Theorem 2. Let the following properties hold for a supersonic flow past a smooth 
convex profile which is the only object in me way of the stream: 

1. The shock wave is smooth over the whole of its length. 
2. The boundary of the subsonic region C does not contain secondary condensation 

jumps. 
3. The critical point at the profile is unique. 
If M, < p (k, M,), then the segment of the shock wave (lying on the boundary of 

C) on which M < M, is convex towards the oncoming flow at each of its points. 
Let us turn our attention to the mapping into the A-plane. Since the profile is 

smooth, the image of the critical point 0 is the segment OrO, of length n of the 
straight line p = const (Fig. 6). The profile contour is mapped into curves continuing 
this segment at both ends. The convexity of the profile means that the angle ‘p incre- 

ases along the curve beginning at 0, 
and decreases along the curve beginning 
at 0, (Fig. 6). 

Fig. 6 

so that the pressure at 8 is smaller than that at 0. Here pm and A, denote the to- 
tal pressure and velocity coefficient at the point S , and L, > 0. 

The image of the shock wave is the entire loop of the shock polar. The point T 

The segment OrO, lies outside the 
loop of the shock polar and to the right 
of it (Fig. 6). At the point 0 we have 

P = Po>Por 

Equality applies only when the stream- 
line which passes through the point s 
at which the shock wave is orthogonal 
to the velocity vector also passes through 
the critical point. At the point 8 we 
have 

I,’ > 

k/V-l) 
<%a 

are either &sent from me shock polar, or their number is even. Indeed, since the 
shock wave de 
families (into 8i 

enerates near infinitely distant points into the characteristics of various 
e characteristic of the first (second) family in the upper (lower) half- 

plane), the images of these neighborhoods in the plane p/l are segments of the shock 
polar, bounded by the point n below and above, respectively. Since the shock wave 
is smooth, its mapping is a continuous curve. If points ?’ exist on the shock wave, 
then poinrs t (images of 2’) break up the shock polar into segments which are traver- 
sed an odd number of times, different for each segment, in a single traversal of the 
shock wave. 

Let us now assume that a point g1 lies on the segment of the shock wave referred to 
in Theorem 2. We can say without loss of generality that the image r of this point 
lies in the upper half- lane of J$, i.e. that pt > 0. The point : bounds a se 

4 
ment 

which is traversed (wi traversal of the shock wave) not less than three times. & sing 
the rule of traversing the boundary of the subsonic region, we find that not less than 
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two sheets of the image of the subsonic region C exist near the point t outside the 
loop of the shock polar. These sheets are shown in Fig. 6 in two possible variants, de- 
pending on whether the image of the shock wave near T lies to the left or to the right 
of 1. Since branch lines are absent when M < I , the sheets are not joined to each 
other. 

Since both sheets contain the u per ri ht-hand quadrant 
t (situated outside the loop of b: 1 

otc of the neighborhood of 
e shot polar), the boundaries of these sheets inter- 

sect this quadrant. Hence, a segment of the boundary of the subsonic region G , which 
does not belong to the shock polar, exists on each sheet to the right of L (i.e. p > p, 
on this segment). When this segment is traversed in the direction of increasing fi , the 
image of C‘(in some neighborhood of this segment) lies to the left of it. Using again 
the rule of traversing the boundary of the subsonic region, we find that the image of the 
profile contour does not satisfy this condition because it is convex, while the image of 
the sonic line fails to satisfy it because of properties 2 and 3. This leaves only the ima- 
ge OrO, of the point 0. However, this segment can bound only one sheet of the 
image C,, since we have no branch lines when M < i , 

This contradiction proves that our assumption concerning the existence of the point 
T on the indicated segment of the shock wave was invalid. The image of C near this 

segment lies outside the loop of the shock polar. Applying the rule traversing the boun- 
dary of C, we find that the shock wave is convex in the direction of the oncoming 
flow on this segment. 

Let us now consider flow past a sharp convex profile with an attached shock wave, 
when the flow behind it is subsonic in some neighborhood of the tip. Analyzing the 
shock polar, we find that such a state may exist when the ratio between M, -and the 
angle of inclination of the profile (at the tip) to the velocity vector of the oncoming 
flow assumes a certain value. 

Theorem 3. Let the following conditions be fulfilled in a supersonic flow past 
a sharp convex profile with an attached shock wave: 

1. The shock wave is smooth everywhere beginning the point of attachment. 
2. The boundary of the subsonic region C near the apex does not contain any sec- 

ondary condensation jumps. 
If M,<p (k, M,), then the segment of the shock wave on which M < M, (provi- 

ded that boundary of C contains such a segment) is convex towards the oncoming flow 
at all its points. 

The proof of this theorem is analogous to that of Theorem 2. 
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